ON THE INVARIANTS OF AUSLANDER AND MARTSINKOVSKY

YUYA OTAKE

The theory of maximal Cohen—Macaulay (abbreviated to MCM) approximations was estab-
lished by Auslander and Buchweitz [2], and has played an important role in Cohen—Macaulay
representation theory. Moreover, Auslander [1] showed that every finitely generated module
M over a commutative Gorenstein local ring admits a unique minimal MCM approximation
0— Yy = Xy — M — 0, and defined the d-invariant of M as follows.

Definition (Auslander [1]). Let R be a commutative Gorenstein local ring and M a finitely
generated R-module. Then the d-invariant dg(M) of M is defined as the rank of the largest
free summand of the minimal MCM approximation X,,.

Numerous interesting properties and applications of the d-invariant have been extensively
studied; see for example [3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16]. Later, Martsinkovsky [11, 12]
extended the theory of the d-invariant to the ¢-invariant over general noetherian local rings.

Definition (Martsinkovsky [11, 12]). Let R be a commutative noetherian local ring with
residue field £ and M a finitely generated R-module. Define V(M) as the subspace of
Hompg(M, k) consisting of all R-homomorphisms f : M — k for which there exists a complex
homomorphism f* : Py, — P¢ with f™ = 0 for all m > 0 and H°(f*) = f, where P}, and
P? are minimal free resolutions of M and k, respectively. Then the {-invariant Eg(M) of M
is defined as the dimension of V(M) as a k-vector space.

Martsinkovsky proved that if R is Gorenstein, then the equality £g(M) = dr(M) holds for
any finitely generated R-module M. Moreover, by using the {-invariant, he gave an extension
of the celebrated theorem of Auslander, Buchsbaum and Serre, and partially extended Ding’s
index theory to general noetherian local rings.

In this talk, we present an approach to analyzing the £-invariant using Auslander’s ap-
proximation theory, based on the preprint [13].
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